

PRECISE A2 Enjoy a PRECISE, RELIABLE, and EASY experience!

Autopilot Steering System with an Exceptional User Experience.

Super-high Fix Rate

Enhanced by the MATRIX ALGORITHM Think PRECISE! WWW.PRECISE-GEO.COM SALES@precise-geo.com @PRECISE-GEO @PRECISE-GEO @ 2 •

99.9%

Super-high Fix Rate

Our product achieves exceptional positioning accuracy.

On average, only 1 out of every 1,000 positioning attempts, This precision ensures unparalleled reliability for critical applications.

Enhenced By

Algorithmic Magic to Enhance 'Precision, Reliability, and Ease', for an Exceptional User Experience

Magical Module

AI Data Correction Algorithm Module

Utilizing an XGBoost model, this module employs AI tools to comprehensively train and fine-tune large-scale pre-data sets, generating data correction functions. This process effectively enhances real-time fix verification success rates by at least 18%.

Magical Module

Partial Ambiguity Resolution Algorithm Module

Implementing the lambda algorithm for fix solutions, this module performs up to ten intelligent satellite exclusion operations based on actual signal conditions, further improving fix rates.

Steering Wheel with Electric Motor

Applicable Motor Rated Torque Maximum Torque Continuous Current Peak Current Operating Power Supply Control Modes Encoder Resolution 12/24V DC 10 N·m 16 N·m 10A 15A DC +7V ~ 32V Speed Mode, Position Mode 1024 pulses per revolution

Built-in Display and Control Unit

Processor Protection Level Positioning & Communication

Input/Output Power Supply Operating Temperature Display IP67-rated Supports radio communication, dual-network 4G data transmission, built-in high-precision positioning and directional BeiDou module 8 DO outputs / 4 AI inputs 9-36V DC, with reverse polarity protection and power failure detection support -40°C to +70°C 8.1", 1024×600 pixels, 750 cd/m² brightness

ARM Cortex-A7, 1.5 GHz, Quad-core, with 2GB RAM and 16GB internal storage

Satellite

Frequency Range	
BDS	B1/
GPS	L1/
GLONASS	L1/
Galileo	E1
LNA Gain	40
Waterproof Rating	IP6
Antenna Dimensions	Ф1

B1/B2/B3 L1/L2/L5 L1/L2 E1 40 dB IP67 Φ100 × 36.5 mm

BeiDou Antenna

Supported SystemBeiDouB1/B2/B3GPSL1/L2/L5GLONASSL1/L2GalileoE1/E5a/E5b

Wheel Steering Angle Gyroscope

Power Supply: 9-36V Six-axis IMU Supports High Dynamic Performance Intelligent Full-Temperature Compensation Designed for Harsh Operating Conditions

Steering Wheel Servo Drive

Applicable Motor Rated Torque Maximum Torque Continuous Current Peak Current Operating Power Supply Control Modes

12/24V DC 10 N·m 16 N·m 10A 15A DC +7V ~ 32V Speed Mode, Position Mode

Encoder Resolution 1024 pulses per revolution Monitor

Full-Screen IPS Display, Readable in Bright Light Industrial-Grade Design Dust and Waterproof (IP67-rated) Built-in 5G Network Communication Operating System: Android 9.0 Supports 10-Point Multi-Touch Screen Size: 8.1 inches

Navigation ECU (Electronic Control Unit)

Wide Voltage Power Supply High-Performance Processor Positioning Positioning Accuracy Heading Accuracy High-Precision Gyroscope Communication Outputs Inputs Interfaces

9-36V

High-Precision Dual-Antenna Positioning Module Less than 1 cm Less than 0.1° Drift Accuracy <0.1°/h 4G Network, Built-in 433MHz Radio 4-Channel DO (One Channel Up to 12A) 4-Channel IA (0-24V Input) 4× RS232, 2× CAN

Vehicle System - Tractor

High Precision: Achieves an operational accuracy of up to 2.5 cm.

Easy Installation: The host unit features a high level of integration, a minimal number of components, and simple wiring connections.

User-Friendly Operation: Intuitive interface, logical layout, intelligent control, and one-click selection of differential signals.

Convenient Maintenance: Supports remote authorization, remote assistance, diagnostics, status checks, and fault alerts.

Simplified Management: Intelligent agricultural machinery monitoring platform enables real-time tracking, equipment status monitoring, and task assignments via computer.

High Reliability: Core components feature ultra-high protection levels, are robust and durable, and comply with international agricultural machinery seismic standards, electromagnetic compatibility standards, and wide-range voltage design.

Advanced Navigation & Positioning: Utilizes high-performance Chinese-made chips supporting all satellite constellations and frequencies, integrating positioning, inertial navigation, dual-network communication, and dual-radio reception.

Wide Adaptability: Suitable for tractors, harvesters, plant protection machines, rice transplanters, and various agricultural machinery brands and power levels.

Multiple Operating Modes: Supports multiple working modes, including straight-line, circular, curved, ultra-low-speed, and diagonal harrowing without human intervention.

Full-Process Application: Applicable across the entire agricultural cycle, including plowing, harrowing, seeding, film laying, trenching, transplanting, pesticide spraying, and harvesting.

Vehicle System - Rice Transplanter

High Precision: Achieves an operational accuracy of up to 2.5 cm.

Easy Installation: The host unit features high integration, a minimal number of components, and simple wiring connections.

User-Friendly Operation: Intuitive interface, logical layout, intelligent control, and one-click selection of differential signals.

Convenient Maintenance: Supports remote authorization, updates, remote assistance, diagnostics, and fault alerts.

Autonomous Operation: The vehicle can automatically plan its route.

Lifting Operation: Controls the lifting of the seedling platform.

Software Platform

Intuitive and Efficient Interface: User-friendly human-machine interaction screen for seamless operation.

Multiple Operating Modes: Supports straight-line and curved-path operations to meet various operational requirements.

Tailored for International Users: Features one-click automatic calibration and automatic pass line calculation.

Android-Based System: Easy to learn and operate, reducing post-sales service difficulties.

Clear and Concise Route Visualization: Ensures accurate operation paths with no omissions or overlaps, even in nighttime conditions.

MATRIX

Algorithmic Magic to Enhance 'Precision, Reliability, and Ease' for an Exceptional User Experience.

The MATRIX algorithm is driven by a "data-driven" philosophy, integrating mainstream spatial sensing technologies such as GNSS and IMU to build a comprehensive algorithm set and optimization platform with the core advantages of EFFICIENT (optimize iteration efficiency), COMPREHENSIVE (module parameter construction) and PRECISE (final results).

In dynamic mode/ scenario, it meets the continuous precise positioning needs of intelligent driving and drones;

In static mode/ scenario, it fulfills the real-time surveying and mapping, and post-processing monitoring requirements for single-point precise positioning.

The MATRIX algorithm comprises three main modules: the RTK Algorithm Module, the PVT Algorithm Module, and the Integrated Algorithm Module (GNSS+IMU).

PRECISE

EFFICIENT

COMPREHENSIVE

99.9%

Super-high Fix Rate

Our product achieves exceptional positioning accuracy.

On average, only 1 out of every 1,000 positioning attempts, This precision ensures unparalleled reliability for critical applications.

Magical Module

AI Data Correction Algorithm Module

Utilizing an XGBoost model, this module employs AI tools to comprehensively train and fine-tune large-scale pre-data sets, generating data correction functions. This process effectively enhances real-time fix verification success rates by at least 18%.

Magical Module Partial Ambiguity Resolution Algorithm Module

Implementing the lambda algorithm for fix solutions, this module performs up to ten intelligent satellite exclusion operations based on actual signal conditions, further improving fix rates.

Algorithmic Magic to Enhance 'Precision, Reliability, and Ease' for an Exceptional User Experience.

500 + 3.000 +

Algorithm Modules

PRECISE

Algorithm Parameters

	RTK Algorithm Module					
RTK Error Correction	RTK Floating Solution Filtering	RTK Error Correction				
Tropospheric Model Correct	Double-Difference Pleudora.	Inter-Epoch Differential M				
Earth's Rotation Effect	Single-Difference Pseudora	Triple Difference Module				
RTK Scene Analysis RTK Co-Visible Satellite Proces	si RTK Filtering Preprocessing RTK Cycle Slip Processing	RTK Prefix				
Tripie Difference Module	Position(Ambiguity Initial	Ambiguity Preprocessing Mo				
RTK Ambiguity Fixing RTK Ambiguity Maintenance	RTK Ambiguity Validation RTK Fixed Solution Position Update	MLAMBDA Algorithm				
Group Double Difference Mo.	Ambiguity Validation Position Solution Lipdate M_	Integer Ambiguity Resoluti				
RTK Mathematical Library RTK Pre-Selection of Satellite	RTK RTCM Processing RTK Satellite Position Calculation	RTK Time Conversion				
Matrix Operations	RTCM Data Parsing Satellite Position Catcula	System Time to Local Time				
Coordinate Transformation						

RTK Algorithm Module

The RTK algorithm employs machine learning algorithms to address traditional technical challenges, achieving scene-adaptive recognition, AI satellite selection, and ambiguity validation. It utilizes carrier phase observations from base stations and mobile stations to achieve high-precision position solutions.

PVT Algorithm Module						
PVT Error Correction	PVT Satellite Selection	PVT Mathematical Library				
PVT Error Correction Trapospheric Mode	Pre-Weight Adjustment Pseudorange Observation De	Matrix Operations				
Relativistic Effects Earth Rotation Effect	Doppler Observation Detect	Coordinate Transformation				
PVT Kalman Filtering PVT Least Squares	PVT NMEA Outpu PVT Process Handling	PVT Satellite Position Calculation				
Katman	PMEA 0133 Protocol Output	BDS, GPS, GAL, GLO Satell.				
PVT Time Conversion						
System UTC Time Conversion						

PVT Algorithm Module

The PVT algorithm utilizes multi-frequency non-combined updates, combining prior and posterior information to maximize information utilization. It also employs INS multi-directional assistance for GNSS and achieves parameter adaptive optimization in different scenarios, providing strong support and assurance for subsequent RTK algorithms.

Intergrated Algorithm Module (GNSS+IMU)						
Attitude Estimation	Initial Alignment Quality	Boot-up Positioning	Loose Coupling Extended Ka.	Tight Coupling Extended Ka		
Loose Coupling Quality Con	Tight Coupling Chi-Square	Antenna Lever Am Estimati	Non-Holonomic Constraint L	Odometer Scale Factor Est		
wo Wheel/Four-Wheel Speed.		NHC Update	Fault Detection and Handli	Inertial Navigation System		
Scene Recognition (Undergr	IMU Error Compensation	Initial Alignment	Mechnization Re-Alignment	Error Feedback Compensatio.		
Time Synchronization	Zero Velocity Update					

ntegrated Algorithm Module

The integrated navigation algorithm employs a multi-level fusion positioning architecture, robust filter design, adaptive sensor fusion, and fault diagnosis mechanism to achieve precise estimation of position, velocity, and attitude.

Think PRECISE!

WWW.PRECISE-GEO.COM / SALES@precise-geo.com / @PRECISE-GEO

