

PRECISE X GNSS Receiver

Think PRECISE!

QUICK GUIDE

Release Month 2025/03

MENU

1 GNSS receiver connection	.3
1.1 Connect with WIFI or Bluetooth	.3
1.2 Fast Connect with NFC	.4
2. Set a new project	.5
3. Localization	.7
4. Set Base station	.8
5. Set Rover station	.8
6. Survey and Stake out	.9
6.1 Point Survey	.9
6.2 Point Stakeout	LO
7. Export data	11
7.1 Path of Handheld controller1	11
7.2 Path of PC1	L2

1 GNSS receiver connection

1.1 Connect with WIFI or Bluetooth

Open the XField on handheld controller, Tap Device and tap communication

← Connectio	n
Manufacturer	Other
Model	RTK
Connection	WIFI
Available WIFI	
P1002616210001	00:d6:cb:0e:ca:cb
zhiyu-internet	90:76:9f:6e:5d:ac
zhiyu-internet	90:76:9f:6e:5d:ae
zhiyu-internet	90:76:9f:6e:5d:ae

It can be connected to WIFI or Bluetooth. If you connected another GNSS receiver before, please tap "Stop" at first.

Debug

The name of "Available WIFI" is same as GNSS receiver code.

1.2 Fast Connect with NFC

← Connection						
Manufacturer	Other >					
Model	RTK >					
Connection	WIFI >					
Available WIFI						
P1002616210001	00:d6:cb:0e:ca:cb					
zhiyu-internet	90:76:9f:6e:5d:ac					
zhiyu-internet	90:76:9f:6e:5d:ae					
Search Fast C	onnect Connect					

"Fast connect" means handheld controller could find your nearest GNSS receiver and connect fast by NFC. You do not need to choose any of receivers on screen.

2. Set a new project

Step1

Tap "Project" and select "Project Management" and tap "New"

← Basic Iı	nfo
Project Path	/storage/emulated/0/ >
Project Name	20240715
Operator	
Notes	
Created Time	2024-07-15 17:21:00
Back	Next

Step2

In Basic Info, you could change the project path, project name, operator and notes as you want. After that go next.

Step3

In Coordinate System

In this step. It is necessary to set "Central Meridian", you could tap your local central meridian automatically.

You also could change ellipsoid of coordinate system such as "WGS-84" and other options as your requirements.

to acquire

3. Localization

Localization means calculating conversion parameters.

You could calculate the conversion parameters to convert coordinate system from the global standard to your local standard.

4. Set Base station

Making sure the GNSS receiver of Base is established, including tripod centered and leveled.

5. Set Rover station

Tap "Rover"

The meaning of all detail parameters is indicated in User manual.

6. Survey and Stake out

Tap "Survey"

Currently, we have three surveys and three stakeouts. You could choose any of them to survey in your work according to your requirements. Now I take Point Survey and Point Stakeout for an example.

6.1 Point Survey

←R	Fixed H:0.022	2 [T] 0 48% 1.8000	← Ant	enna Pa	rameter			phase	center 1
N:3352277.8 Elev:2.4000	B066 E:511149 Base Dist	.1621 .:None	Measure H	eight		1.8000	1	\in	⊢ R → ↑ HL
Ð	Demo		Measure N	lethod	Slant He	ight >	1	slaot beight	
Zoom in Zoom out			Antenna			Ň	slant	height	
ार ज भ्र Full Map	\odot		Antenna H	eight		1.8204	to all	\overline{X}	$\langle \rangle$
Center			Antenna Param Antenna Ty	eter /pe	AT	=+ 100 >	phase center	XI	Pole height
Backgro	•pt1 4.1893	.	R(mm)	64.4	H(mm)	46.4		// \	
Photo Sk.			HL1(mm)	21.6	HL2(mm)	23.6		′\	
pt3	Code +	v [v] Entity +						\	
		2		Со	nfirm		Anter	nna height mea	asurement method

At first, it is necessary to set the height of antenna. Tap **1.8000** and change antenna parameters. the whole figure of measuring methods is as follow.

In addition, Tilt Survey is also supported. After initializing IMU you

ld tap 🎽 to capture your

point. Tapping **I** you could find "Points" which you have been collected.

6.2 Point Stakeout

In Point Stakeout, you could see the direction clearly which you need to go forward or backward or ground filling.

It supports tilt stakeout. Tapping Tilt Survey to use tilt survey.

P

It also supports AR stakeout. Tapping to use AR stakeout which means you could see the stake point directly with camera and follow the leading indicators to stake.

7. Export data

← Export		
File Name	202404	10
Export Path	/storage/emulated/0/ FieldNow/Export	>
Export File Format		
AutoCAD file (dxf)		>
Setting		
Line Name	•	•
Point Name	•	•
Elev	•	•
Code	•	•
	Export	

Tap "Project—Export". You could export all points which you have been collected in different format.

In "Export", you could change the file name, export path (In default, the path is P3/Internal shared storage/XField/Export) and Export file format.

For export file format. The supported file formats are as follows.

You could select any of file format as your requirements. After that,you could find your export files both in the handheld controller and the PC with USB cable. The detail of export file paths are as follows.

Format Select Format Select Formats Formats AutoCAD file (dxf) GoogleEarth file format (kml) [Point Name, Lon, Lat, Alt] Cass Format (dat) [Point Name, Code, E. N. Elev] GoogleEarth file format (kmz) [Point Name, Lon, Lat, Alt] Plane Coordinates (dat) [Point Name, N, E, Elev, Code] Carlson file format (crd) GEO Coordinates (dat) [N. E. Elev, Code, Point Name] [Point Name, Lat, Lon, Alt, Code] German-BW file (txt) NETCAD format (ncn) [Point Name, Code, empty, N, empty, E, empty, Elev] me, E, N, Elev, Code] GNSS format (dat) PXY file (pxy) Fonts Tominal (Cude, N. E., Elev, Lat, Lon, Alt, X. Y. Z., Ground North, Ground East, Ground Height, UTC Time, Solution, Age, Max Delay, Mino Delay, Used Sat, Tracked Sat, Access Point, Epoch, Starting Time, End Time, HRMS, VRMS, NRMS, ERMS, HDDP, VDOP, PDOP, Antenna Type, Antenna Measured Method, Antenna N, E, Elev, Code] GoogleEarth file format (kml) [Point Name, Lon, Lat, Alt]

7.1 Path of Handheld controller

File – xField – Export

7.2 Path of PC

P3 – Internal shared storage – xField - Export

Think PRECISE!

WWW.PRECISE-GEO.COM / SALES@precise-geo.com / @PRECISE-GEO

